// $Id$ /* * Copyright (C) 2010 sk89q and contributors * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ package com.sk89q.util; import java.util.Collection; /** * String utilities. * * @author sk89q */ public class StringUtil { /** * Trim a string if it is longer than a certain length. * * @param str * @param len * @return */ public static String trimLength(String str, int len) { if (str.length() > len) { return str.substring(0, len); } return str; } /** * Join an array of strings into a string. * * @param str * @param delimiter * @param initialIndex * @return */ public static String joinString(String[] str, String delimiter, int initialIndex) { if (str.length == 0) { return ""; } StringBuilder buffer = new StringBuilder(str[initialIndex]); for (int i = initialIndex + 1; i < str.length; ++i) { buffer.append(delimiter).append(str[i]); } return buffer.toString(); } /** * Join an array of strings into a string. * * @param str * @param delimiter * @param initialIndex * @param quote * @return */ public static String joinQuotedString(String[] str, String delimiter, int initialIndex, String quote) { if (str.length == 0) { return ""; } StringBuilder buffer = new StringBuilder(); buffer.append(quote); buffer.append(str[initialIndex]); buffer.append(quote); for (int i = initialIndex + 1; i < str.length; ++i) { buffer.append(delimiter).append(quote).append(str[i]).append(quote); } return buffer.toString(); } /** * Join an array of strings into a string. * * @param str * @param delimiter * @return */ public static String joinString(String[] str, String delimiter) { return joinString(str, delimiter, 0); } /** * Join an array of strings into a string. * * @param str * @param delimiter * @param initialIndex * @return */ public static String joinString(Object[] str, String delimiter, int initialIndex) { if (str.length == 0) { return ""; } StringBuilder buffer = new StringBuilder(str[initialIndex].toString()); for (int i = initialIndex + 1; i < str.length; ++i) { buffer.append(delimiter).append(str[i].toString()); } return buffer.toString(); } /** * Join an array of strings into a string. * * @param str * @param delimiter * @param initialIndex * @return */ public static String joinString(int[] str, String delimiter, int initialIndex) { if (str.length == 0) { return ""; } StringBuilder buffer = new StringBuilder(Integer.toString(str[initialIndex])); for (int i = initialIndex + 1; i < str.length; ++i) { buffer.append(delimiter).append(Integer.toString(str[i])); } return buffer.toString(); } /** * Join an list of strings into a string. * * @param str * @param delimiter * @param initialIndex * @return */ public static String joinString(Collection str, String delimiter, int initialIndex) { if (str.size() == 0) { return ""; } StringBuilder buffer = new StringBuilder(); int i = 0; for (Object o : str) { if (i >= initialIndex) { if (i > 0) { buffer.append(delimiter); } buffer.append(o.toString()); } ++i; } return buffer.toString(); } /** *

Find the Levenshtein distance between two Strings.

* *

This is the number of changes needed to change one String into * another, where each change is a single character modification (deletion, * insertion or substitution).

* *

The previous implementation of the Levenshtein distance algorithm * was from http://www.merriampark.com/ld.htm

* *

Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError * which can occur when my Java implementation is used with very large strings.
* This implementation of the Levenshtein distance algorithm * is from http://www.merriampark.com/ldjava.htm

* *
     * StringUtil.getLevenshteinDistance(null, *)             = IllegalArgumentException
     * StringUtil.getLevenshteinDistance(*, null)             = IllegalArgumentException
     * StringUtil.getLevenshteinDistance("","")               = 0
     * StringUtil.getLevenshteinDistance("","a")              = 1
     * StringUtil.getLevenshteinDistance("aaapppp", "")       = 7
     * StringUtil.getLevenshteinDistance("frog", "fog")       = 1
     * StringUtil.getLevenshteinDistance("fly", "ant")        = 3
     * StringUtil.getLevenshteinDistance("elephant", "hippo") = 7
     * StringUtil.getLevenshteinDistance("hippo", "elephant") = 7
     * StringUtil.getLevenshteinDistance("hippo", "zzzzzzzz") = 8
     * StringUtil.getLevenshteinDistance("hello", "hallo")    = 1
     * 
* * @param s the first String, must not be null * @param t the second String, must not be null * @return result distance * @throws IllegalArgumentException if either String input null */ public static int getLevenshteinDistance(String s, String t) { if (s == null || t == null) { throw new IllegalArgumentException("Strings must not be null"); } /* * The difference between this impl. and the previous is that, rather * than creating and retaining a matrix of size s.length()+1 by * t.length()+1, we maintain two single-dimensional arrays of length * s.length()+1. The first, d, is the 'current working' distance array * that maintains the newest distance cost counts as we iterate through * the characters of String s. Each time we increment the index of * String t we are comparing, d is copied to p, the second int[]. Doing * so allows us to retain the previous cost counts as required by the * algorithm (taking the minimum of the cost count to the left, up one, * and diagonally up and to the left of the current cost count being * calculated). (Note that the arrays aren't really copied anymore, just * switched...this is clearly much better than cloning an array or doing * a System.arraycopy() each time through the outer loop.) * * Effectively, the difference between the two implementations is this * one does not cause an out of memory condition when calculating the LD * over two very large strings. */ int n = s.length(); // length of s int m = t.length(); // length of t if (n == 0) { return m; } else if (m == 0) { return n; } int p[] = new int[n + 1]; // 'previous' cost array, horizontally int d[] = new int[n + 1]; // cost array, horizontally int _d[]; // placeholder to assist in swapping p and d // indexes into strings s and t int i; // iterates through s int j; // iterates through t char t_j; // jth character of t int cost; // cost for (i = 0; i <= n; ++i) { p[i] = i; } for (j = 1; j <= m; ++j) { t_j = t.charAt(j - 1); d[0] = j; for (i = 1; i <= n; ++i) { cost = s.charAt(i - 1) == t_j ? 0 : 1; // minimum of cell to the left+1, to the top+1, diagonally left // and up +cost d[i] = Math.min(Math.min(d[i - 1] + 1, p[i] + 1), p[i - 1] + cost); } // copy current distance counts to 'previous row' distance counts _d = p; p = d; d = _d; } // our last action in the above loop was to switch d and p, so p now // actually has the most recent cost counts return p[n]; } }