Plex-FAWE/worldedit-core/src/main/java/com/fastasyncworldedit/core/queue/implementation/QueueHandler.java
Alexander Brandes 3b7d126718
Release 2.6.2
2023-06-07 11:11:54 +02:00

512 lines
19 KiB
Java

package com.fastasyncworldedit.core.queue.implementation;
import com.fastasyncworldedit.core.Fawe;
import com.fastasyncworldedit.core.FaweCache;
import com.fastasyncworldedit.core.configuration.Settings;
import com.fastasyncworldedit.core.queue.IBatchProcessor;
import com.fastasyncworldedit.core.queue.IChunkCache;
import com.fastasyncworldedit.core.queue.IChunkGet;
import com.fastasyncworldedit.core.queue.IChunkSet;
import com.fastasyncworldedit.core.queue.IQueueChunk;
import com.fastasyncworldedit.core.queue.IQueueExtent;
import com.fastasyncworldedit.core.queue.Trimable;
import com.fastasyncworldedit.core.queue.implementation.chunk.ChunkCache;
import com.fastasyncworldedit.core.util.MemUtil;
import com.fastasyncworldedit.core.util.TaskManager;
import com.fastasyncworldedit.core.util.collection.CleanableThreadLocal;
import com.fastasyncworldedit.core.util.task.FaweForkJoinWorkerThreadFactory;
import com.fastasyncworldedit.core.wrappers.WorldWrapper;
import com.google.common.util.concurrent.Futures;
import com.sk89q.worldedit.world.World;
import java.lang.ref.WeakReference;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Queue;
import java.util.concurrent.Callable;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.function.Supplier;
/**
* Class which handles all the queues {@link IQueueExtent}
*/
@SuppressWarnings({"unchecked", "rawtypes"})
public abstract class QueueHandler implements Trimable, Runnable {
private static final int PROCESSORS = Runtime.getRuntime().availableProcessors();
/**
* Primary queue should be used for tasks that are unlikely to wait on other tasks, IO, etc. (i.e. spend most of their
* time utilising CPU.
*/
private final ForkJoinPool forkJoinPoolPrimary = new ForkJoinPool(
PROCESSORS,
new FaweForkJoinWorkerThreadFactory("FAWE Fork Join Pool Primary - %s"),
null,
false
);
/**
* Secondary queue should be used for "cleanup" tasks that are likely to be shorter in life than those submitted to the
* primary queue. They may be IO-bound tasks.
*/
private final ForkJoinPool forkJoinPoolSecondary = new ForkJoinPool(
PROCESSORS,
new FaweForkJoinWorkerThreadFactory("FAWE Fork Join Pool Secondary - %s"),
null,
false
);
/**
* Main "work-horse" queue for FAWE. Handles chunk submission (and chunk submission alone). Blocking in order to forcibly
* prevent overworking/over-submission of chunk process tasks.
*/
private final ThreadPoolExecutor blockingExecutor = FaweCache.INSTANCE.newBlockingExecutor();
/**
* Queue for tasks to be completed on the main thread. These take priority of tasks submitted to syncWhenFree queue
*/
private final ConcurrentLinkedQueue<FutureTask> syncTasks = new ConcurrentLinkedQueue<>();
/**
* Queue for tasks to be completed on the main thread. These are completed only if and when there is time left in a tick
* after completing all tasks in the syncTasks queue
*/
private final ConcurrentLinkedQueue<FutureTask> syncWhenFree = new ConcurrentLinkedQueue<>();
private final Map<World, WeakReference<IChunkCache<IChunkGet>>> chunkGetCache = new HashMap<>();
private final CleanableThreadLocal<IQueueExtent<IQueueChunk>> queuePool = new CleanableThreadLocal<>(QueueHandler.this::create);
/**
* Used to calculate elapsed time in milliseconds and ensure block placement doesn't lag the
* server
*/
private long last;
private long allocate = 50;
protected QueueHandler() {
TaskManager.taskManager().repeat(this, 1);
}
@Override
public void run() {
if (!Fawe.isMainThread()) {
throw new IllegalStateException("Not main thread");
}
if (!syncTasks.isEmpty()) {
long currentAllocate = getAllocate();
if (!MemUtil.isMemoryFree()) {
// TODO reduce mem usage
// FaweCache trim
// Preloader trim
}
operate(syncTasks, last, currentAllocate);
} else if (!syncWhenFree.isEmpty()) {
operate(syncWhenFree, last, getAllocate());
} else {
// trim??
}
}
/**
* Get if the {@code blockingExecutor} is saturated with tasks or not. Under-utilisation implies the queue has space for
* more submissions.
*
* @return true if {@code blockingExecutor} is not saturated with tasks
*/
public boolean isUnderutilized() {
return blockingExecutor.getActiveCount() < blockingExecutor.getMaximumPoolSize();
}
private long getAllocate() {
long now = System.currentTimeMillis();
double targetTPS = 18 - Math.max(Settings.settings().QUEUE.EXTRA_TIME_MS * 0.05, 0);
long diff = 50 + this.last - (this.last = now);
long absDiff = Math.abs(diff);
if (diff == 0) {
allocate = Math.min(50, allocate + 1);
} else if (diff < 0) {
allocate = Math.max(5, allocate + diff);
} else if (!Fawe.instance().getTimer().isAbove(targetTPS)) {
allocate = Math.max(5, allocate - 1);
}
return allocate - absDiff;
}
private void operate(Queue<FutureTask> queue, long start, long currentAllocate) {
boolean wait = false;
do {
Runnable task = queue.poll();
if (task == null) {
if (wait) {
synchronized (syncTasks) {
try {
queue.wait(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
task = queue.poll();
wait = false;
} else {
break;
}
}
if (task != null) {
task.run();
wait = true;
}
} while (System.currentTimeMillis() - start < currentAllocate);
}
/**
* @deprecated For removal without replacement.
*/
@Deprecated(forRemoval = true, since = "2.6.2")
public <T extends Future<T>> void complete(Future<T> task) {
try {
while (task != null) {
task = task.get();
}
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}
}
/**
* Complete a task in the {@code forkJoinPoolSecondary} queue. Secondary queue should be used for "cleanup" tasks that are
* likely to be shorter in life than those submitted to the primary queue. They may be IO-bound tasks.
*
* @param run Runnable to run
* @param value Value to return when done
* @param <T> Value type
* @return Future for submitted task
*/
public <T> Future<T> async(Runnable run, T value) {
return forkJoinPoolSecondary.submit(run, value);
}
/**
* Complete a task in the {@code forkJoinPoolSecondary} queue. Secondary queue should be used for "cleanup" tasks that are
* likely to be shorter in life than those submitted to the primary queue. They may be IO-bound tasks.
*
* @param run Runnable to run
* @return Future for submitted task
*/
public Future<?> async(Runnable run) {
return forkJoinPoolSecondary.submit(run);
}
/**
* Complete a task in the {@code forkJoinPoolSecondary} queue. Secondary queue should be used for "cleanup" tasks that are
* likely to be shorter in life than those submitted to the primary queue. They may be IO-bound tasks.
*
* @param call Callable to run
* @param <T> Return value type
* @return Future for submitted task
*/
public <T> Future<T> async(Callable<T> call) {
return forkJoinPoolSecondary.submit(call);
}
/**
* Complete a task in the {@code forkJoinPoolPrimary} queue. Primary queue should be used for tasks that are unlikely to
* wait on other tasks, IO, etc. (i.e. spend most of their time utilising CPU.
*
* @param run Task to run
* @return {@link ForkJoinTask} representing task being run
*/
public ForkJoinTask submit(Runnable run) {
return forkJoinPoolPrimary.submit(run);
}
/**
* Submit a task to be run on the main thread. Does not guarantee to be run on the next tick as FAWE will only operate to
* maintain approx. 18 tps.
*
* @param run Task to run
* @param <T> Value type
* @return Future representing task
*/
public <T> Future<T> sync(Runnable run) {
return sync(run, syncTasks);
}
/**
* Submit a task to be run on the main thread. Does not guarantee to be run on the next tick as FAWE will only operate to
* maintain approx. 18 tps.
*
* @param call Task to run
* @param <T> Value type
* @return Future representing task
*/
public <T> Future<T> sync(Callable<T> call) throws Exception {
return sync(call, syncTasks);
}
/**
* Submit a task to be run on the main thread. Does not guarantee to be run on the next tick as FAWE will only operate to
* maintain approx. 18 tps.
*
* @param supplier Task to run
* @param <T> Value type
* @return Future representing task
*/
public <T> Future<T> sync(Supplier<T> supplier) {
return sync(supplier, syncTasks);
}
/**
* Submit a task to be run on the main thread. Does not guarantee to be run on the next tick as FAWE will only operate to
* maintain approx. 18 tps. Takes lower priority than tasks submitted via any {@code QueueHandler#sync} method. Completed
* only if and when there is time left in a tick after completing all sync tasks submitted using the aforementioned methods.
*
* @param run Task to run
* @param value Value to return when done
* @param <T> Value type
* @return Future representing task
*/
public <T> Future<T> syncWhenFree(Runnable run, T value) {
return sync(run, value, syncWhenFree);
}
/**
* Submit a task to be run on the main thread. Does not guarantee to be run on the next tick as FAWE will only operate to
* maintain approx. 18 tps. Takes lower priority than tasks submitted via any {@code QueueHandler#sync} method. Completed
* only if and when there is time left in a tick after completing all sync tasks submitted using the aforementioned methods.
*
* @param run Task to run
* @param <T> Value type
* @return Future representing task
*/
public <T> Future<T> syncWhenFree(Runnable run) {
return sync(run, syncWhenFree);
}
/**
* Submit a task to be run on the main thread. Does not guarantee to be run on the next tick as FAWE will only operate to
* maintain approx. 18 tps. Takes lower priority than tasks submitted via any {@code QueueHandler#sync} method. Completed
* only if and when there is time left in a tick after completing all sync tasks submitted using the aforementioned methods.
*
* @param call Task to run
* @param <T> Value type
* @return Future representing task
*/
public <T> Future<T> syncWhenFree(Callable<T> call) throws Exception {
return sync(call, syncWhenFree);
}
/**
* Submit a task to be run on the main thread. Does not guarantee to be run on the next tick as FAWE will only operate to
* maintain approx. 18 tps. Takes lower priority than tasks submitted via any {@code QueueHandler#sync} method. Completed
* only if and when there is time left in a tick after completing all sync tasks submitted using the aforementioned methods.
*
* @param supplier Task to run
* @param <T> Value type
* @return Future representing task
*/
public <T> Future<T> syncWhenFree(Supplier<T> supplier) {
return sync(supplier, syncWhenFree);
}
private <T> Future<T> sync(Runnable run, T value, Queue<FutureTask> queue) {
if (Fawe.isMainThread()) {
run.run();
return Futures.immediateFuture(value);
}
final FutureTask<T> result = new FutureTask<>(run, value);
queue.add(result);
notifySync(queue);
return result;
}
private <T> Future<T> sync(Runnable run, Queue<FutureTask> queue) {
if (Fawe.isMainThread()) {
run.run();
return Futures.immediateCancelledFuture();
}
final FutureTask<T> result = new FutureTask<>(run, null);
queue.add(result);
notifySync(queue);
return result;
}
private <T> Future<T> sync(Callable<T> call, Queue<FutureTask> queue) throws Exception {
if (Fawe.isMainThread()) {
return Futures.immediateFuture(call.call());
}
final FutureTask<T> result = new FutureTask<>(call);
queue.add(result);
notifySync(queue);
return result;
}
private <T> Future<T> sync(Supplier<T> call, Queue<FutureTask> queue) {
if (Fawe.isMainThread()) {
return Futures.immediateFuture(call.get());
}
final FutureTask<T> result = new FutureTask<>(call::get);
queue.add(result);
notifySync(queue);
return result;
}
private void notifySync(Object object) {
synchronized (object) {
object.notifyAll();
}
}
/**
* Internal use only. Specifically for submitting {@link IQueueChunk} for "processing" an edit. Submits to the blocking
* executor, the main "work-horse" queue for FAWE. Handles chunk submission (and chunk submission alone). Blocking in order
* to forcibly prevent overworking/over-submission of chunk process tasks.
*
* @param chunk chunk
* @param <T>
* @return Future representing task
*/
public <T extends Future<T>> T submit(IQueueChunk<T> chunk) {
// if (MemUtil.isMemoryFree()) { TODO NOT IMPLEMENTED - optimize this
// return (T) forkJoinPoolSecondary.submit(chunk);
// }
return (T) blockingExecutor.submit(chunk);
}
/**
* Get or create the WorldChunkCache for a world
*/
public IChunkCache<IChunkGet> getOrCreateWorldCache(World world) {
world = WorldWrapper.unwrap(world);
synchronized (chunkGetCache) {
final WeakReference<IChunkCache<IChunkGet>> ref = chunkGetCache.get(world);
if (ref != null) {
final IChunkCache<IChunkGet> cached = ref.get();
if (cached != null) {
return cached;
}
}
final IChunkCache<IChunkGet> created = new ChunkCache<>(world);
chunkGetCache.put(world, new WeakReference<>(created));
return created;
}
}
public IQueueExtent<IQueueChunk> create() {
return new SingleThreadQueueExtent();
}
/**
* Sets the current thread's {@link IQueueExtent} instance in the queue pool to null.
*/
public void unCache() {
queuePool.set(null);
}
private IQueueExtent<IQueueChunk> pool() {
IQueueExtent<IQueueChunk> queue = queuePool.get();
if (queue == null) {
queuePool.set(queue = queuePool.init());
}
return queue;
}
/**
* Indicate a "set" task is being started.
*
* @param parallel if the "set" being started is parallel/async
* @deprecated To be replaced by better-named {@link QueueHandler#startUnsafe(boolean)} )}
*/
@Deprecated(forRemoval = true, since = "2.6.2")
public void startSet(boolean parallel) {
startUnsafe(parallel);
}
/**
* Indicate a "set" task is ending.
*
* @param parallel if the "set" being started is parallel/async
* @deprecated To be replaced by better-named {@link QueueHandler#endUnsafe(boolean)} )}
*/
@Deprecated(forRemoval = true, since = "2.6.2")
public void endSet(boolean parallel) {
startUnsafe(parallel);
}
/**
* Indicate an unsafe task is starting. Physics are frozen, async catchers disabled, etc. for the duration of the task
*
* @param parallel If the task is being run async and/or in parallel
*/
public abstract void startUnsafe(boolean parallel);
/**
* Indicate a/the unsafe task submitted after a {@link QueueHandler#startUnsafe(boolean)} call has ended.
*
* @param parallel If the task was being run async and/or in parallel
*/
public abstract void endUnsafe(boolean parallel);
/**
* Create a new queue for a given world.
*/
public IQueueExtent<IQueueChunk> getQueue(World world) {
return getQueue(world, null, null);
}
/**
* Create a new queue for a given world.
*
* @param world World to create queue for
* @param processor existing processor to set to queue or null
* @param postProcessor existing post-processor to set to queue or null
* @return New queue for given world
*/
public IQueueExtent<IQueueChunk> getQueue(World world, IBatchProcessor processor, IBatchProcessor postProcessor) {
final IQueueExtent<IQueueChunk> queue = pool();
IChunkCache<IChunkGet> cacheGet = getOrCreateWorldCache(world);
IChunkCache<IChunkSet> set = null; // TODO cache?
queue.init(world, cacheGet, set);
if (processor != null) {
queue.setProcessor(processor);
}
if (postProcessor != null) {
queue.setPostProcessor(postProcessor);
}
return queue;
}
/**
* Trims each chunk GET cache
*
* @param aggressive if each chunk GET cache should be trimmed aggressively
* @return true if all chunk GET caches could be trimmed
*/
@Override
public boolean trim(boolean aggressive) {
boolean result = true;
synchronized (chunkGetCache) {
final Iterator<Map.Entry<World, WeakReference<IChunkCache<IChunkGet>>>> iter = chunkGetCache
.entrySet().iterator();
while (iter.hasNext()) {
final Map.Entry<World, WeakReference<IChunkCache<IChunkGet>>> entry = iter.next();
final WeakReference<IChunkCache<IChunkGet>> value = entry.getValue();
final IChunkCache<IChunkGet> cache = value.get();
if (cache.trim(aggressive)) {
iter.remove();
continue;
}
result = false;
}
}
return result;
}
}