Plex-FAWE/worldedit-bukkit/src/main/java/com/sk89q/worldedit/bukkit/adapter/Regenerator.java

552 lines
22 KiB
Java

package com.sk89q.worldedit.bukkit.adapter;
import com.boydti.fawe.beta.IChunkCache;
import com.boydti.fawe.beta.IChunkGet;
import com.boydti.fawe.beta.implementation.queue.SingleThreadQueueExtent;
import com.boydti.fawe.config.Settings;
import com.boydti.fawe.util.MathMan;
import com.sk89q.worldedit.extent.Extent;
import com.sk89q.worldedit.internal.util.LogManagerCompat;
import com.sk89q.worldedit.math.BlockVector2;
import com.sk89q.worldedit.math.BlockVector3;
import com.sk89q.worldedit.regions.CuboidRegion;
import com.sk89q.worldedit.regions.Region;
import com.sk89q.worldedit.world.RegenOptions;
import com.sk89q.worldedit.world.biome.BiomeType;
import it.unimi.dsi.fastutil.ints.Int2ObjectOpenHashMap;
import it.unimi.dsi.fastutil.longs.Long2ObjectLinkedOpenHashMap;
import it.unimi.dsi.fastutil.longs.Long2ObjectOpenHashMap;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.stream.Collectors;
import org.apache.logging.log4j.Logger;
import org.bukkit.generator.BlockPopulator;
/**
* Represents an abstract regeneration handler.
* @param <IChunkAccess> the type of the {@Code IChunkAccess} of the current Minecraft implementation
* @param <ProtoChunk> the type of the {@Code ProtoChunk} of the current Minecraft implementation
* @param <Chunk> the type of the {@Code Chunk} of the current Minecraft implementation
* @param <ChunkStatus> the type of the {@Code ChunkStatusWrapper} wrapping the {@Code ChunkStatus} enum
*/
public abstract class Regenerator<IChunkAccess, ProtoChunk extends IChunkAccess, Chunk extends IChunkAccess, ChunkStatus extends Regenerator.ChunkStatusWrapper<IChunkAccess>> {
private static final Logger LOGGER = LogManagerCompat.getLogger();
protected final org.bukkit.World originalBukkitWorld;
protected final Region region;
protected final Extent target;
protected final RegenOptions options;
//runtime
protected final Map<ChunkStatus, Concurrency> chunkStati = new LinkedHashMap<>();
protected boolean generateConcurrent = true;
protected long seed;
private final Long2ObjectLinkedOpenHashMap<ProtoChunk> protoChunks = new Long2ObjectLinkedOpenHashMap<>();
private final Long2ObjectOpenHashMap<Chunk> chunks = new Long2ObjectOpenHashMap<>();
private ExecutorService executor;
private SingleThreadQueueExtent source;
/**
* Initializes an abstract regeneration handler.
* @param originalBukkitWorld the Bukkit world containing all the information on how to regenerate the {code Region}
* @param region the selection to regenerate
* @param target the target {@code Extent} to paste the regenerated blocks into
* @param options the options to used while regenerating and pasting into the target {@code Extent}
*/
public Regenerator(org.bukkit.World originalBukkitWorld, Region region, Extent target, RegenOptions options) {
this.originalBukkitWorld = originalBukkitWorld;
this.region = region;
this.target = target;
this.options = options;
}
/**
* Regenerates the selected {@code Region}.
* @return whether or not the regeneration process was successful
* @throws Exception when something goes terribly wrong
*/
public boolean regenerate() throws Exception {
if (!prepare()) {
return false;
}
try {
if (!initNewWorld()) {
cleanup0();
return false;
}
} catch (Exception e) {
cleanup0();
throw e;
}
try {
if (!generate()) {
cleanup0();
return false;
}
} catch (Exception e) {
cleanup0();
throw e;
}
try {
copyToWorld();
} catch (Exception e) {
cleanup0();
throw e;
}
cleanup0();
return true;
}
/**
* Returns the {@code ProtoChunk} at the given chunk coordinates.
* @param x the chunk x coordinate
* @param z the chunk z coordinate
* @return the {@code ProtoChunk} at the given chunk coordinates or null if it is not part of the regeneration process or has not been initialized yet.
*/
protected ProtoChunk getProtoChunkAt(int x, int z) {
return protoChunks.get(MathMan.pairInt(x, z));
}
/**
* Returns the {@code Chunk} at the given chunk coordinates.
* @param x the chunk x coordinate
* @param z the chunk z coordinate
* @return the {@code Chunk} at the given chunk coordinates or null if it is not part of the regeneration process or has not been converted yet.
*/
protected Chunk getChunkAt(int x, int z) {
return chunks.get(MathMan.pairInt(x, z));
}
private boolean generate() throws Exception {
if (generateConcurrent) {
//Using concurrent chunk generation
executor = Executors.newFixedThreadPool(Settings.IMP.QUEUE.PARALLEL_THREADS);
} // else using sequential chunk generation, concurrent not supported
//TODO: can we get that required radius down without affecting chunk generation (e.g. strucures, features, ...)?
//for now it is working well and fast, if we are bored in the future we could do the research (a lot of it) to reduce the border radius
//generate chunk coords lists with a certain radius
Int2ObjectOpenHashMap<List<Long>> chunkCoordsForRadius = new Int2ObjectOpenHashMap<>();
chunkStati.keySet().stream().map(ChunkStatusWrapper::requiredNeigborChunkRadius0).distinct().forEach(radius -> {
if (radius == -1) //ignore ChunkStatus.EMPTY
return;
int border = 16 - radius; //9 = 8 + 1, 8: max border radius used in chunk stages, 1: need 1 extra chunk for chunk features to generate at the border of the region
chunkCoordsForRadius.put(radius, getChunkCoordsRegen(region, border));
});
//create chunks
for (Long xz : chunkCoordsForRadius.get(0)) {
ProtoChunk chunk = createProtoChunk(MathMan.unpairIntX(xz), MathMan.unpairIntY(xz));
protoChunks.put(xz, chunk);
}
//generate lists for RegionLimitedWorldAccess, need to be square with odd length (e.g. 17x17), 17 = 1 middle chunk + 8 border chunks * 2
Int2ObjectOpenHashMap<Long2ObjectOpenHashMap<List<IChunkAccess>>> worldlimits = new Int2ObjectOpenHashMap<>();
chunkStati.keySet().stream().map(ChunkStatusWrapper::requiredNeigborChunkRadius0).distinct().forEach(radius -> {
if (radius == -1) //ignore ChunkStatus.EMPTY
return;
Long2ObjectOpenHashMap<List<IChunkAccess>> map = new Long2ObjectOpenHashMap<>();
for (Long xz : chunkCoordsForRadius.get(radius)) {
int x = MathMan.unpairIntX(xz);
int z = MathMan.unpairIntY(xz);
List<IChunkAccess> l = new ArrayList<>((radius + 1 + radius) * (radius + 1 + radius));
for (int zz = z - radius; zz <= z + radius; zz++) { //order is important, first z then x
for (int xx = x - radius; xx <= x + radius; xx++) {
l.add(protoChunks.get(MathMan.pairInt(xx, zz)));
}
}
map.put(xz, l);
}
worldlimits.put(radius, map);
});
//run generation tasks exluding FULL chunk status
for (Map.Entry<ChunkStatus, Concurrency> entry : chunkStati.entrySet()) {
ChunkStatus chunkStatus = entry.getKey();
int radius = chunkStatus.requiredNeigborChunkRadius0();
List<Long> coords = chunkCoordsForRadius.get(radius);
if (this.generateConcurrent && entry.getValue() == Concurrency.RADIUS) {
SequentialTasks<ConcurrentTasks<SequentialTasks<Long>>> tasks = getChunkStatusTaskRows(coords, radius);
for (ConcurrentTasks<SequentialTasks<Long>> para : tasks) {
List scheduled = new ArrayList<>(tasks.size());
for (SequentialTasks<Long> row : para) {
scheduled.add((Callable) () -> {
for (Long xz : row) {
chunkStatus.processChunkSave(xz, worldlimits.get(radius).get(xz));
}
return null;
});
}
try {
List<Future> futures = executor.invokeAll(scheduled);
for (Future future : futures) {
future.get();
}
} catch (Exception e) {
e.printStackTrace();
}
}
} else if (this.generateConcurrent && entry.getValue() == Concurrency.FULL) {
// every chunk can be processed individually
List scheduled = new ArrayList(coords.size());
for (long xz : coords) {
scheduled.add((Callable) () -> {
chunkStatus.processChunkSave(xz, worldlimits.get(radius).get(xz));
return null;
});
}
try {
List<Future> futures = executor.invokeAll(scheduled);
for (Future future : futures) {
future.get();
}
} catch (Exception e) {
e.printStackTrace();
}
} else { // Concurrency.NONE or generateConcurrent == false
// run sequential
for (long xz : coords) {
chunkStatus.processChunkSave(xz, worldlimits.get(radius).get(xz));
}
}
}
//convert to proper chunks
for (Long xz : chunkCoordsForRadius.get(0)) {
ProtoChunk proto = protoChunks.get(xz);
chunks.put(xz, createChunk(proto));
}
//final chunkstatus
ChunkStatus FULL = getFullChunkStatus();
for (Long xz : chunkCoordsForRadius.get(0)) { //FULL.requiredNeighbourChunkRadius() == 0!
Chunk chunk = chunks.get(xz);
FULL.processChunkSave(xz, Arrays.asList(chunk));
}
//populate
List<BlockPopulator> populators = getBlockPopulators();
for (Long xz : chunkCoordsForRadius.get(0)) {
int x = MathMan.unpairIntX(xz);
int z = MathMan.unpairIntY(xz);
//prepare chunk seed
Random random = getChunkRandom(seed, x, z);
//actually populate
Chunk c = chunks.get(xz);
populators.forEach(pop -> {
populate(c, random, pop);
});
}
source = new SingleThreadQueueExtent();
source.init(null, initSourceQueueCache(), null);
return true;
}
private void copyToWorld() {
//Setting Blocks
long start = System.currentTimeMillis();
boolean genbiomes = options.shouldRegenBiomes();
boolean hasBiome = options.hasBiomeType();
BiomeType biome = options.getBiomeType();
for (BlockVector3 vec : region) {
target.setBlock(vec, source.getBlock(vec));
if (hasBiome) {
target.setBiome(vec, biome);
} else if (genbiomes) {
target.setBiome(vec, source.getBiome(vec));
}
// realExtent.setSkyLight(vec, extent.getSkyLight(vec));
// realExtent.setBlockLight(vec, extent.getBrightness(vec));
}
}
private void cleanup0() {
if (executor != null) {
executor.shutdownNow();
}
cleanup();
}
//functions to be implemented by sub class
/**
* <p>Implement the preparation process in here. DO NOT instanciate any variable here that require the cleanup function. This function is for gathering further information before initializing a new
* world.</p>
*
* <p>Fields required to be initialized: chunkStati, seed</p>
* <p>For chunkStati also see {code ChunkStatusWrapper}.</p>
*
* @return whether or not the preparation process was successful
*/
protected abstract boolean prepare();
/**
* Implement the creation of the seperate world in here.
*
* Fields required to be initialized: generateConcurrent
*
* @return true if everything went fine, otherwise false. When false is returned the Regenerator halts the regeneration process and calls the cleanup function.
* @throws java.lang.Exception When the implementation of this method throws and exception the Regenerator halts the regeneration process and calls the cleanup function.
*/
protected abstract boolean initNewWorld() throws Exception;
/**
* Implement the cleanup of all the mess that is created during the regeneration process (initNewWorld() and generate()).This function must not throw any exceptions.
*/
protected abstract void cleanup();
//functions to implement by sub class - regenate related
/**
* Implement the initialization of a {@code ProtoChunk} here.
*
* @param x the x coorinate of the {@code ProtoChunk} to create
* @param z the z coorinate of the {@code ProtoChunk} to create
* @return an initialized {@code ProtoChunk}
*/
protected abstract ProtoChunk createProtoChunk(int x, int z);
/**
* Implement the convertion of a {@code ProtoChunk} to a {@code Chunk} here.
*
* @param protoChunk the {@code ProtoChunk} to be converted to a {@code Chunk}
* @return the converted {@code Chunk}
*/
protected abstract Chunk createChunk(ProtoChunk protoChunk);
/**
* Return the {@code ChunkStatus.FULL} here.
* ChunkStatus.FULL is the last step of vanilla chunk generation.
*
* @return {@code ChunkStatus.FULL}
*/
protected abstract ChunkStatus getFullChunkStatus();
/**
* Return a list of {@code BlockPopulator} used to populate the original world here.
*
* @return {@code ChunkStatus.FULL}
*/
protected abstract List<BlockPopulator> getBlockPopulators();
/**
* Implement the population of the {@code Chunk} with the given chunk random and {@code BlockPopulator} here.
*
* @param chunk the {@code Chunk} to populate
* @param random the chunk random to use for population
* @param pop the {@code BlockPopulator} to use
*/
protected abstract void populate(Chunk chunk, Random random, BlockPopulator pop);
/**
* Implement the initialization an {@code IChunkCache<IChunkGet>} here. Use will need the {@code getChunkAt} function
* @return an initialized {@code IChunkCache<IChunkGet>}
*/
protected abstract IChunkCache<IChunkGet> initSourceQueueCache();
//algorithms
private List<Long> getChunkCoordsRegen(Region region, int border) { //needs to be square num of chunks
BlockVector3 oldMin = region.getMinimumPoint();
BlockVector3 newMin = BlockVector3.at((oldMin.getX() >> 4 << 4) - border * 16, oldMin.getY(), (oldMin.getZ() >> 4 << 4) - border * 16);
BlockVector3 oldMax = region.getMaximumPoint();
BlockVector3 newMax = BlockVector3.at((oldMax.getX() >> 4 << 4) + (border + 1) * 16 - 1, oldMax.getY(), (oldMax.getZ() >> 4 << 4) + (border + 1) * 16 - 1);
Region adjustedRegion = new CuboidRegion(newMin, newMax);
return adjustedRegion.getChunks().stream()
.map(c -> BlockVector2.at(c.getX(), c.getZ()))
.sorted(Comparator.<BlockVector2>comparingInt(c -> c.getZ()).thenComparingInt(c -> c.getX())) //needed for RegionLimitedWorldAccess
.map(c -> MathMan.pairInt(c.getX(), c.getZ()))
.collect(Collectors.toList());
}
/**
* Creates a list of chunkcoord rows that may be executed concurrently
*
* @param allcoords the coords that should be sorted into rows, must be sorted by z and x
* @param requiredNeighborChunkRadius the radius of neighbor chunks that may not be written to conccurently (ChunkStatus.requiredNeighborRadius)
* @return a list of chunkcoords rows that may be executed concurrently
*/
private SequentialTasks<ConcurrentTasks<SequentialTasks<Long>>> getChunkStatusTaskRows(List<Long> allcoords, int requiredNeighborChunkRadius) {
int requiredneighbors = Math.max(0, requiredNeighborChunkRadius);
int minx = allcoords.isEmpty() ? 0 : MathMan.unpairIntX(allcoords.get(0));
int maxx = allcoords.isEmpty() ? 0 : MathMan.unpairIntX(allcoords.get(allcoords.size() - 1));
int minz = allcoords.isEmpty() ? 0 : MathMan.unpairIntY(allcoords.get(0));
int maxz = allcoords.isEmpty() ? 0 : MathMan.unpairIntY(allcoords.get(allcoords.size() - 1));
SequentialTasks<ConcurrentTasks<SequentialTasks<Long>>> tasks;
if (maxz - minz > maxx - minx) {
int numlists = Math.min(requiredneighbors * 2 + 1, maxx - minx + 1);
Int2ObjectOpenHashMap<SequentialTasks<Long>> byx = new Int2ObjectOpenHashMap();
int expectedListLength = (allcoords.size() + 1) / (maxx - minx);
//init lists
for (int i = minx; i <= maxx; i++) {
byx.put(i, new SequentialTasks(expectedListLength));
}
//sort into lists by x coord
for (Long xz : allcoords) {
byx.get(MathMan.unpairIntX(xz)).add(xz);
}
//create parallel tasks
tasks = new SequentialTasks(numlists);
for (int offset = 0; offset < numlists; offset++) {
ConcurrentTasks<SequentialTasks<Long>> para = new ConcurrentTasks((maxz - minz + 1) / numlists + 1);
for (int i = 0; minx + i * numlists + offset <= maxx; i++)
para.add(byx.get(minx + i * numlists + offset));
tasks.add(para);
}
} else {
int numlists = Math.min(requiredneighbors * 2 + 1, maxz - minz + 1);
Int2ObjectOpenHashMap<SequentialTasks<Long>> byz = new Int2ObjectOpenHashMap();
int expectedListLength = (allcoords.size() + 1) / (maxz - minz);
//init lists
for (int i = minz; i <= maxz; i++) {
byz.put(i, new SequentialTasks(expectedListLength));
}
//sort into lists by x coord
for (Long xz : allcoords) {
byz.get(MathMan.unpairIntY(xz)).add(xz);
}
//create parallel tasks
tasks = new SequentialTasks(numlists);
for (int offset = 0; offset < numlists; offset++) {
ConcurrentTasks<SequentialTasks<Long>> para = new ConcurrentTasks((maxx - minx + 1) / numlists + 1);
for (int i = 0; minz + i * numlists + offset <= maxz; i++)
para.add(byz.get(minz + i * numlists + offset));
tasks.add(para);
}
}
return tasks;
}
private static Random getChunkRandom(long worldseed, int x, int z) {
Random random = new Random();
random.setSeed(worldseed);
long xRand = random.nextLong() / 2L * 2L + 1L;
long zRand = random.nextLong() / 2L * 2L + 1L;
random.setSeed((long) x * xRand + (long) z * zRand ^ worldseed);
return random;
}
//classes
/**
* This class is used to wrap the ChunkStatus of the current Minecraft implementation and as the implementation to execute a chunk generation step.
* @param <IChunkAccess> the IChunkAccess class of the current Minecraft implementation
*/
public static abstract class ChunkStatusWrapper<IChunkAccess> {
/**
* Return the required neighbor chunk radius the wrapped {@code ChunkStatus} requires.
*
* @return the radius of required neighbor chunks
*/
public abstract int requiredNeigborChunkRadius();
int requiredNeigborChunkRadius0() {
return Math.max(0, requiredNeigborChunkRadius());
}
/**
* Return the name of the wrapped {@code ChunkStatus}.
*
* @return the radius of required neighbor chunks
*/
public abstract String name();
/**
* Return the name of the wrapped {@code ChunkStatus}.
*
* @param xz represents the chunk coordinates of the chunk to process as denoted by {@code MathMan}
* @param accessibleChunks a list of chunks that will be used during the execution of the wrapped {@code ChunkStatus}.
* This list is order in the correct order required by the {@code ChunkStatus}, unless Mojang suddenly decides to do things differently.
*/
public abstract void processChunk(Long xz, List<IChunkAccess> accessibleChunks);
void processChunkSave(Long xz, List<IChunkAccess> accessibleChunks) {
try {
processChunk(xz, accessibleChunks);
} catch (Exception e) {
LOGGER.error("Error while running " + name() + " on chunk " + MathMan.unpairIntX(xz) + "/" + MathMan.unpairIntY(xz), e);
}
}
}
public enum Concurrency {
FULL,
RADIUS,
NONE
}
public static class SequentialTasks<T> extends Tasks<T> {
public SequentialTasks(int expectedsize) {
super(expectedsize);
}
}
public static class ConcurrentTasks<T> extends Tasks<T> {
public ConcurrentTasks(int expectedsize) {
super(expectedsize);
}
}
public static class Tasks<T> implements Iterable<T> {
private final List<T> tasks;
public Tasks(int expectedsize) {
tasks = new ArrayList(expectedsize);
}
public void add(T task) {
tasks.add(task);
}
public List<T> list() {
return tasks;
}
public int size() {
return tasks.size();
}
@Override
public Iterator<T> iterator() {
return tasks.iterator();
}
@Override
public String toString() {
return tasks.toString();
}
}
}